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The flow field generated by axial oscillations of a finite-length cylinder in an 
incompressible viscous fluid is described by the unsteady Stokes equations and 
computed with a first-kind boundary-integral formulation. Numerical calculations 
were conducted for particle oscillation periods comparable with the viscous relaxation 
time and the results are contrasted to those for an oscillating sphere and spheroid. For 
high-frequency oscillations, a two-term boundary-layer solution is formulated that 
involves two, sequentially solved, second-kind integral equations. Good agreement is 
obtained between the boundary-layer solution and fully numerical calculations at 
moderate oscillation frequencies. The flow field and traction on the cylinder surface 
display several features that are qualitatively distinct from those found for smooth 
particles. At the edges, where the base joins the side of the cylinder, the traction on the 
cylinder surface exhibits a singular behaviour, characteristic of steady two-dimensional 
viscous flow. The singular traction is manifested by a sharply varying pressure profile 
in a near-field region. Instantaneous streamline patterns show the formation of three 
viscous eddies during the decelerating portion of the oscillation cycle that are attached 
to the side and bases of the cylinder. As deceleration proceeds, the eddies grow, 
coalesce at the edges of the particle, and thus form a single eddy that encloses the entire 
particle. Subsequent instantaneous streamline patterns for the remainder of the 
oscillation cycle are insensitive to particle geometry: the eddy diffuses outwards and 
vanishes upon particle reversal ; a simple streaming flow pattern occurs during particle 
acceleration. The evolution of the viscous eddies is most apparent at moderate 
oscillation frequencies. Qualitative results are obtained for the oscillatory flow field 
past an arbitrary particle. For moderate oscillation frequencies, pathlines are elliptical 
orbits that are insensitive to particle geometry ; pathlines reduce to streamline segments 
in constant-phase regions close to and far from the particle surface. 

1. Introduction 
The oscillatory motion of microscopic particles in a Newtonian viscous liquid arises 

in several scientific and engineering applications. The swimming motion of micro- 
organisms and Brownian particle motion are well-known natural examples (Hocquart 
& Hinch 1983; Hurd et al. 1985). Ultrasonic (Allegra & Hawley 1971), and more 
recently, electroacoustic (O’Brien 1990) devices rely on a knowledge of oscillatory 
motion to relate macroscopic measurements to microscopic suspension parameters. 
The latter application exploits the reciprocity between oscillating electric and pressure 
fields in colloidal suspensions that interact via the electrophoretic mobility of a 
colloidal particle. 

t Current address : Department of Chemical Engineering, University of Colorado, Boulder, CO 
80309-0424, USA. 
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For oscillatory motion, the particle velocity is described by U, e cos wt ,  where e and 
U,/w are the direction and magnitude of the particle displacement. In general, the 
Navier-Stokes equations govern the fluid motion. In most situations of interest, the 
particle displacement is very small compared to particle size, a, herein taken to be the 
cylinder or sphere radius. It follows that the Strouhal number is large: Sl = wa/U, 9 
1. In electroacoustic applications (O'Brien 1990; Loewenberg & O'Brien 1992) for 
example, U, - lop3 cm s-l, and w - 1 MHz thus, S l -  lo5 for a 1 pm particle; the 
particle motion is merely an ultrasonic 'buzzing' : indeed, particle displacement is 
exceedingly small compared to particle size. It follows that the Reynolds number based 
on particle size is small (Batchelor 1967): Re = U,a/v = Ih12//sl 4 1, where v is the 
kinematic viscosity of the suspending fluid, and Ihl is an O(1) frequency parameter 
defined beneath (1.1). This scaling result allows the Navier-Stokes equations to be 
linearized, which greatly simplifies theoretical analyses of microscopic oscillatory 
particle motion (Kim & Karrila 1991). The fluid can be considered incompressible if 
the sonic wavelength is large compared to the particle size at the oscillation frequency, 
w (Batchelor 1967). This is generally true at the frequencies of interest; for example, the 
wavelength of sound in water is 1 cm at the typical frequency, w = 1 MHz. 

It follows that the unsteady Stokes equations govern the fluid velocity and pressure: 

which have been non-dimensionalized using U, and pU,/a ( p  is the dynamic viscosity) 
for the characteristic velocity and pressure; vij is the viscous stress tensor. The 
complex-valued frequency parameter, h = a(w/v): e-i"/4, characterizes the unsteadiness 
of the fluid motion; lhI2 is the ratio of the viscous relaxation time to the period of 
particle oscillation, and 1Al-l is the distance that vorticity diffuses during half an 
oscillation cycle : the viscous penetration length, normalized by the particle size. 

Without loss of generality, u(x, t )  = u(x) e-i"t and p(x ,  t )  = p(x )  e-i"t have been 
assumed in (l.l), where u(x) and p(x )  are, in general, complex-valued fields. By the 
linearity of the unsteady Stokes equations, general time-dependent behaviour can be 
constructed from its Fourier components (Basset 1888; Lawrence & Weinbaum 1988). 
It follows that unsteady Stokes flow is reversible which precludes net particle motion 
and inertial steady-streaming flow (Batchelor 1967); pathlines for the fluid motion are 
closed orbits. 

The solution of (1.1) must satisfy a no-slip boundary condition, u = e, on the particle 
surface, and on the assumption that the particle is isolated, u and p must vanish at 
infinity. The steady Stokes equations are recovered from (1.1) for Ih( < 1; at high 
oscillation frequencies, Ihl b 1 ,  the fluid motion is described by potential flow 
everywhere except within a viscous boundary layer on the particle surface that has 
thickness 1hl-l. Under typical conditions relevant to the applications cited above, 
Ihl = O(1); e.g. Ihl = 1 for a 1 pm particle in water with w = 1 MHz. 

The detailed effects of particle shape in steady Stokes flow are, by now, well-known 
thanks to extensive studies on the subject (e.g. Oberbeck 1876; Edwardes 1892; Jeffery 
1922; Burgers 1938). By contrast, oscillatory Stokes flow past a microscopic particle 
has received far less attention. Beginning with the investigation on the oscillatory 
motion of a sphere or (infinite) cylinder in a viscous fluid by Stokes (1851), most 
investigations on oscillatory Stokes flow past particles have been focused on finding the 
frequency-dependent resistance of the particle. It has been shown that the unsteady 
hydrodynamic resistance of moderate-aspect-ratio spheroids (Lawrence & Weinbaum 
1988 ; Pozrikidis 1989 a) and cylinders (Loewenberg 1993) is accurately approximated 
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FIGURE 1. Defining sketch showing the meridian-plane contour, 0 < s < 2. The cylinder centreline is 
defined by s = 0, s = _+ 1 on the cylinder edges, and the symmetry axis intersects the particle surface 
at s f 2 ;  0 is the azimuthal angle. 

( f 5 %) at all frequencies by an algebraic expression involving only the steady Stokes 
resistance, added mass, and Basset force of a particle which are determined from the 
steady Stokes and potential flow equations. 

There have been virtually no investigations into the details of the oscillatory flow 
field past a particle. An exception is the investigation of Pozrikidis (1989b) on the 
oscillatory flow field past spheroids, dumbbells, and biconcave discs that was 
motivated by an interest in microscopic convective processes such as blood flow. 
Numerical solutions were obtained using a boundary integral formulation of the 
unsteady Stokes equations. Tangential stress distributions exhibited the largest phase 
angles on the portions of the particle surface with the least curvature, and the smallest 
phase angle on highly curved portions. Since vanishing tangential stress signals locally 
reversing flow, Pozrikidis (1989b) argued that reversal occurs first on surface regions 
of lowest curvature; reversal is last on highly curved regions. This feature implies the 
existence of travelling stagnation points on the spheroid surface that are associated 
with the formation of an attached eddy on the low-curvature portion of the surface. 
The eddy gradually expands until it encloses the entire particle surface and then 
detaches. Streamline patterns were computed at different instants throughout the 
oscillation cycle to illustrate the transient flow field. Unfortunately, streamline patterns 
could not be constructed to illustrate the attached eddy. The streamline patterns that 
were shown for oscillating spheroids, dumbbells, and biconcave discs were qualitatively 
the same as those for an oscillating sphere. 

Finite-length circular cylinders in potential flow (Hess 1962) and steady Stokes flow 
(Gluckman, Weinbaum & Pfeffer 1972; Youngren & Acrivos 1975; Chen, Leu & 
Zargar 1986) have been the subject of several well-known theoretical studies since the 
advent of computational fluid mechanics around 1960. In each case a cylindrical 
particle was studied, in part because of the flow field or traction singularity that is 
predicted by two-dimensional flow theories (Dean & Montagnon 1949 ; Jackson 1962) 
to occur at the sharp edges formed where the flat bases join the circular side of the 
cylinder (cf. figure 1). For numerical computations, a finite-length cylinder is the 
simplest three-dimensional geometry with sharp features because of its axisymmetry 
and fore-aft symmetry. Furthermore, numerical calculations for certain hydrodynamic 
resistance functions can be empirically tested because cylindrical particles are a 
practical shape for experiments : they are relatively easy to manufacture (Heiss & Coull 
1952; Ui, Hussey & Roger 1984; Kasper, Niida & Yang 1985; Davis 1991). 

The purpose of this paper is to examine the detailed effects of a non-smooth particle 
profile on unsteady Stokes flow. These effects are investigated for case of an axially 
oscillating finite-length circular cylinder with a diameter equal to its height as 
illustrated in figure 1 ; a unit aspect-ratio cylinder was chosen to emphasize effects of 
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the edges on the flow field. The results of this investigation provide a deeper general 
understanding of oscillatory Stokes flow. The general capability of the boundary 
integral formulation for numerically solving the unsteady Stokes equations is made 
more apparent. 

In $2, the boundary integral formulation of the unsteady Stokes equations is 
developed. A boundary-layer solution is formulated for high oscillation frequencies. In 
93, the numerical solution procedure is described. In $4, numerical results for the 
traction on the surface of an oscillating cylinder are presented and discussed; results 
are contrasted with the analytical results for a sphere and numerical results for 
spheroids. The boundary-layer solution verifies the consistency of the numerical 
solutions. In $ 5 ,  numerical solutions are presented for the fluid velocity and pressure 
fields past an oscillating cylinder, and the results are contrasted with those for spheres 
and spheroids. Contour plots are used to depict the pressure field, streamline plots 
show the fluid velocity at several critical instants during the particle oscillation cycle, 
and pathline plots reveal the displacement of fluid elements during a complete cycle. 
Concluding remarks are made in $6. 

2. Boundary integral formulation 
2.1. General formulation for a translating particle 

Numerical solutions of the unsteady Stokes equations ( 1 . 1 )  were obtained using a 
boundary integral formulation. The relevant theory is well-established for the steady 
Stokes equations (Ladyzhenskaya 1969) and has been recently adapted for unsteady 
flows (Pozrikidis 1989b, 1992; Kim & Karrila 1991). The development is summarized 
below for linearized incompressible flow (potential flow, and steady and unsteady 
Stokes flow) past a translating, rigid particle in a quiescent fluid. 

An integral expression for the fluid velocity at a point x, in the flow field is obtained 
starting with the reciprocal relation for unsteady Stokes flow: V. [u(x)- Q*(x) - 
u * ( x ) . ~ ( x ) ]  = 0, where u, Q and u*, Q* are solutions of ( 1 . 1 )  at x. Then we take u*, 
Q* = S, T which vanish at infinity and satisfy the singular, unsteady Stokes equations: 

where Sij and 6(2) are the Kronecker and Dirac delta functions, and i = x - x,. The 
desired expression is obtained from a limiting process where x,, is excluded from the 
domain by a ball of vanishing radius: 

1 
u j ( x ~  = -E S,, [gik(x) sij(2) -ui(x) ~ k j ( 3 1 1  n,(x) d ~ ( x ) ,  (2.2) 

where S,  is the particle surface with outward normal n,. For x, on S,, the factor 1/8n 
in (2.2) becomes 1/4n. The unsteady Stokeslet, Sij, and associated stress and pressure 
fields, Tk, and Qj, are (Williams 1966): 

( 2 . 3 ~ )  

(2.3 b, c) 

where 1 1  3 3  
a(t)  = I+-+-  b(t) = 1+-+- 

t t2’ t t2’ 
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and r = 191. As indicated, Stj is symmetric, and qkj is symmetric with respect to the first 
two indices only. 

Using the divergence theorem and (2. l), we can rewrite (2.3) for a translating particle 
as (Pozrikidis 1989b) 

(2.4) 

where f i  + h2(ek x k )  n, = gik nk is the traction on the particle surface. It does not seem 
possible to eliminate the associated stress field, qkj, in (2.3) by similar manoeuvers 
and obtain an analogous expression for rotary motion except when h = 0 (Kim & 
Karrila 199 1). The (symmetric) oscillatory hydrodynamic resistance, defined by < = 
-pa U, ej Re{ Rij epiWt}, is 

1 
uj(xO) = -- L(X) S(j(9) dS(x), 

8n s,, 

ti Z L ,  

s,, 

R.. = -e. &dS-h2VP/,,,, (2.5) 

where V, is the dimensionless particle volume and h2VP/pij is the resistance due to 
buoyancy. 

Substituting (2.4) into the unsteady Stokes equations (1. l), and using (2. l), yields the 
pressure field at points away from the particle boundary (Ladyzhenskaya 1969) : 

(2.6) 
1 

~ ( x o )  = -% fi(x> Q i ( 4  dS(x), 

where the factor 1/8n is replaced by 1/4n for xo on S,. The result applies for all 
linearized incompressible flows because V2p(xo) = 0, as implied by (1.1). Equation (2.4) 
applies for xo in the fluid or on the particle surface where uj = e j :  

(2.7) 
1 e.  3 = -- gn S,,f;(.) ' i j ( ' >  dS(x)> 

which is a first-hand Fredholm-type integral equation for the modified traction, f i  = 
gik nk - h2(x, ek) n,. 

For h+O, the modified and true tractions coincide, and the steady Stokeslet is 
recovered from (2.3) : Sij + cYtj/r + 2, i j / r 3 ;  thus, (2.7) reduces to the boundary integral 
equation for the steady Stokes traction (Ladyzhenskaya 1969). For (hl < 1, the 
translational resistance tensor is (Pozrikidis 1989 b) 

(2.8) Rij = Rfj + hRfk R!j/6n + O((hI2), 
where Rfj is the steady Stokes resistance tensor. 

2.2. Asymptotic solution for high-frequency oscillation 
As discussed in 93, it is difficult to solve (2.7) for (hl 9 1. The asymptotic high- 
frequency solution, formulated below, is therefore useful. At moderately high 
frequencies, the asymptotic solution provides a test of the fully numerical solutions. 

2.2.1. Potential flow field 

In the high-frequency limit, Ihl r + GO, viscous terms in the singularity solution (2.3) 
vanish exponentially; the singular velocity and stress field describe the irrotational flow 
associated with a potential dipole : 
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where the singular pressure, Q,, is given by (2.2~). Thus, in the limit Ihl r+ co, (2.4) 
becomes 

for xn in the flow field where @ is a velocity potential that satisfies: 

V2@ = 0, Uik = -h2@Jik. 

(2.10) 

(2.1 1) 

It follows that = - A 2 [ @  + ek xk] ni ; inserting this result into (2. lo), and allowing x, 
to approach S,, yields a second-kind Fredholm-type integral equation for the velocity 
potential on the particle surface : 

(2.12) 

where the factor of 1/4n becomes 1/8n for points away from the particle surface. 
The resulting irrotational velocity field vanishes at infinity and satisfies im- 

penetrability on the particle surface but it fails to satisfy the no-slip boundary 
condition on the particle surface. This familiar problem results from the non-uniform 
limiting process, Ihl r +  00, used ‘to derive (2.10) from (2.4). At high frequencies, a 
viscous boundary layer of thickness 1hl-l resides on the particle surface. Away from the 
boundary layer, the velocity field is described by (2.12) because the limit, Ihl r + co, is 
uniformly attained. For the linearized flow considered herein that describes small- 
amplitude oscillations, boundary-layer separation does not occur (Batchelor 1967). 

2.2.2. Boundary-layer solution 
In the viscous boundary layer on the particle surface, the characteristic length for 

tangential flow field variations is the local radius of mean curvature, b(x),  whereas 
flow field variations normal to the particle surface occur on a lengthscale, 1hl-l. For 
lh( b(x)  P 1, the boundary-layer equations for the unsteady Stokes flow field are 

where w is the tangential velocity field, u is the normal velocity component, z is the local 
normal coordinate, V, is the surface gradient operator and @ is the velocity potential 
(evaluated at the particle surface) for the flow field outside the boundary layer.? The 
velocity field that satisfies the no-slip boundary condition on the particle surface and 
matches the potential flow solution, (2.12), outside of the boundary layer is 

where u’ = e + V@ is the associated tangential slip velocity (relative to the particle 
surface), and hp’ = p - h2@ is the O(lA1) excess pressure that results from the boundary 
layer flow. 

t Equation (2.13a) is misprinted in Loewenberg (1994, Equation 1Ou) 
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For Ihl $. 1, the traction on the particle surface is 

f i  = -hh2@ni+hJ;’, (2.15) 

where h2@ is the leading-order pressure distribution on the particle surface obtained 
from the potential flow field (2.12); hx is an O(lh1) correction associated with the 
boundary-layer solution : 

= u; -p’n. a )  (2.16) 

where hu; is the leading-order tangential stress, obtained by differentiating the 
potential flow solution; hp’ is the O(lh1) correction to the leading-order pressure 
distribution. 

For xo on S,, (2.6) yields a second-kind Fredholm-type integral equation for the 
excess pressure : 

where (2.12) must first be solved to supply the slip velocity, u;. Unfortunately, the 
integral of u;(x) (Ii($) on S, is only conditionally convergent because its r-’ singularity 
makes numerical integration difficult. A better numerical procedure is obtained by 
incorporating (2.14~) and the fact that V2p’(x,) = 0; accordingly, a well-posed second- 
kind integral equation is given by (Jackson 1962) 

(2.17) 

where u’ is obtained from (2.12). 
At high oscillation frequencies, the translational resistance is (Batchelor 1967) 

Rij = h2Mt  + hB$ + O( l), (2.18) 

where M i  = e, Jsp @nj dS and hB$ = e, fj’ dS s,, 
are the symmetric (Gavze 1990) added mass and Basset force tensors. As indicated, the 
added mass is obtained from the potential flow solution. The Basset force tensor is the 
leading-order correction that results from the boundary-layer solution but it can also 
be obtained from the potential flow solution by considering viscous dissipation in the 
boundary layer (Batchelor 1967) : 

B; = ei ei Jsp  u; uk dS. 

The boundary-layer solution is considered herein because the pointwise traction is of 
interest. 

3. Numerical solution procedure 
For the axisymmetric flow past an oscillating cylinder, the modified surface traction, 

fi = crtk nk - h2(xk ek)  n,, has a normal and tangent component; both are axisymmetric. 
The tangential component has fore-aft symmetry, the normal component is fore-aft 
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antisymmetric. The symmetry properties of the velocity potential, @, and excess 
pressure coefficient, p', are the same as fin,. Thus, fi(x), and the high-frequency 
boundary-layer contribution, x(x), are determined everywhere on the particle surface 
by their values on the one-dimensional, meridian-plane contour depicted in figure 1. 

Numerical solutions of (2.7), (2.12), and (2.17) were obtained by discretizing the 
contour, 0 d s d 2, (cf. figure 1) into 2N unequal segments As, = t,- taPl, a = 1,2, 
3,. . . ,2N (N segments on each subinterval: [0,1] and [l,  2]), with centres, s, = 

+(t,+ where t, = 1 - [(N-a)  IN-al"'l-"] Nlim-l. This procedure yields As, = 
O(ls, - 1 Im/N).  The corresponding unknown functions fi(s), @(s), and p'(s) were 
approximated by piecewise-constant functions fi(s,), @(s,), and p'(s,) on the contour 
segments. 

As discussed in $4, the flow around a 90" two-dimensional corner has an 
algebraically singular traction: Ifi(s)l cc Is- 1 1 - 0 . 4 5 5 5 1 6 - .  for steady, viscous flow, and 
Ix(s)l cc Is- 11-f for the boundary-layer flow. It will be shown that the local flow field 
near the cylinder edge is characterized by quasi-steady two-dimensional flow. 
Anticipating these results, the above discretization procedure was implemented with 
m z for numerical solutions of (2.7) (lAl = 0(1)), and with rn = 5 for (2.12) and (2.17) 
(lAl & 1). Numerical results were insensitive to the precise value of m. By this policy, 
Ifi(s,)l As, = Ix(s,)l As, = O(l/N), for all 01 = 1,2,3,. . . ,2N. 

The real and imaginary parts of the normal and tangential components off, on each 
meridian-plane contour segment were obtained from the discretized version of (2.7) by 
solving a dense 8N x 8N linear system that results by explicitly satisfying (the real and 
imaginary parts of) ui = e, at each of the 2N collocation points, s,. Each matrix element 
was evaluated by numerical integration of (the real and imaginary parts of) S, on each 
boundary element, defined by a contour segment and azimuthal rotation, As, x [0, n] 
(evaluation for [0, -n] deduced by azimuthal symmetry). A product of one- 
dimensional adaptive quadrature rules was implemented for this purpose. For 
unsteady Stokes flow, the surface integrations cannot be analytically reduced to line 
integrals (Pozrikidis 1989 b). Diagonal matrix elements that contain the 1 / r  singularity 
of Sij at x,, were evaluated to relative accuracy z the subdominant, off-diagonal 
elements were evaluated to an absolute error z times the magnitude of the largest 
diagonal element. The singular contribution of Sij to the diagonal elements was 
accurately included by approximating the particle surface at x, with a small tangent 
disc of radius a, and evaluating the integral on this subinterval analytically (Youngren 
& Acrivos 1975). For a, d As,/lOO, numerical results were insensitive to a, for the 
calculations attempted herein. 

A 2Nx 2N linear system of equations was obtained from discretizing (2.12) and 
(2.17). For these equations, each matrix element was evaluated by integrating Qi ni on 
each boundary element, As, x [ -n, n]. The azimuthal integrations were performed 
analytically (Smith & Pierce 1958) and the s-integrations along the contour segments 
were obtained by one-dimensional adaptive (numerical) quadrature. Diagonal and off- 
diagonal matrix elements were evaluated to the accuracies described above for the 
linear system obtained from (2.7). The singular contribution of Q,n, to the diagonal 
elements was accurately included as described for S, above. In this case, a smaller 
tangent disc was required, a, = 10p4As,, and the integral of Q,n, on this subinterval 
vanishes. The integral ss,[Vs - u'(x)/r] dS(x) that forms the right-hand-side for the 
linear system derived from (2.17) was similarly evaluated. First, u' was numerically 
obtained from (2.12); integration of the l / r  singularity was analytically evaluated on 
a small tangent disc, a, = 10-4As,. 

The linear systems derived by discretizing (2.7), (2.12), and (2.17) were solved by 
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Gaussian elimination. The linear systems associated with (2.12) and (2.17) were 
diagonally dominant and well-conditioned. At low frequencies, linear systems 
associated with (2.7) were characteristically ill-conditioned (Karrila & Kim 1989). 
However, accurate convergent solutions were easily obtained at low frequencies ; the 
estimated condition number decreased significantly for Ihl = O( 1). 

For Ihl % 1, the oscillatory wavelength of S,  (= viscous boundary-layer thickness, 
IhI-'), must be resolved for accurate numerical integration; thus, the number of 
function evaluations increases as lhI2 for the surface integrations of Sij. The CPU time 
for solving (2.7) is dominated by numerical integration and, thus, increases as lAl2 at 
high frequencies. Computations were restricted to Ihl < 7, for this reason (Pozrikidis 
1989b). Thus, we cannot expect to observe the convergence of the fully numerical 
modified traction, f,, obtained from (2.7), to the high-frequency form (2.15) obtained 
from (2.12) and (2.17). However, the results discussed in $4 (figure 2) demonstrate that, 
away from the cylinder edge, the boundary-layer solution agrees closely with fully 
numerical calculations even for the modest frequencies considered herein. 

Figure 3 reveals that, away from the edge of the cylinder (Is- 11 2 0.02), traction 
profiles obtained with 2N = 40 contour segments agree very closely with profiles 
obtained with 2 N =  160 segments. A discretization with 160 segments was used 
throughout because it gave superior resolution of the traction singularity at s = 1. The 
traction profiles depicted in figures 2(a) and 2(c) for steady Stokes flow agree with 
Youngren & Acrivos (1975) to the accuracy of graphical comparison ( f 3 % ) ;  
unfortunately, no other traction profiles are available for comparison. 

After solving forf,, the unsteady Stokes pressure and velocity at points in the flow 
interior were obtained by numerical integration of (2.4) and (2.6) using a product of 
one-dimensional adaptive quadrature rules with lop4 relative error tolerance. After 
determining @ on the cylinder surface, the potential flow pressure and velocity were 
obtained by numerical integration of (2.10); the azimuthal integration was performed 
analytically, and the s-integration was obtained by adaptive, numerical quadrature 
( relative error tolerance). Instantaneous streamlines were obtained by integrating 
the 2 x 2 system of ordinary differential equations (5.2) using a predictor-corrector 
algorithm with relative error tolerance. Contour plots of the pressure field were 
obtained by interpolation on a rectangular grid with linear spacing a/ 100. Convergence 
of the velocity and pressure fields obtained by the foregoing procedure was easily 
obtained. 

4. Surface traction 
4.1. Results for  smooth particles 

A sphere has particularly simple constant-phase pressure and tangential stress 
distributions (Stokes 1851): 

p(0) = C[ 1 + A  ++A2] cos 0, arg [p(0)] = tan-' ( 3!$ ::ln"; 2, 2 (4.1) 

fo(0) = :[ 1 + A ]  sin 0, arg &(0)] = tan-l ___ (2 Id 
Recalling the eciWt time dependence, and that locally vanishing tangential stress signals 
a stagnation point (Batchelor 1967), (4.2) indicates that the local flow field adjacent 
to the surface apparently stagnates simultaneously over the entire sphere surface 
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(and subsequently reverses direction) twice in each oscillation cycle: when wt = 

cot-l [arg (&)I. Similarly, the pressure on a sphere surface simultaneously vanishes 
everywhere when wt  = cot-l [arg (p)] .  The leading-order pressure distribution at high 
oscillation frequencies, :A2 cos 8, can be obtained from the potential flow solution; the 
next term, ;A cos 0, can be obtained from the boundary-layer solution according to the 
procedure described in 52.2.2. 

4.2.  Results for a jinite-length cylinder 
The pressure and tangential stress distributions on the surface of an axially oscillating 
cylinder are shown in figures 2 and 3 ; the normalized magnitude profiles are quantified 
by the values in table 1 .  The singularity at s = 1 (except for the non-singular potential 
flow pressure distribution) contrasts markedly with the smooth continuous tractions 
on a sphere or spheroids (Pozrikidis 1989 b).  

Figure 2(a)  reveals that Ip(s)l is singular at s = 1 .  Figure 2(b)  shows that arg[p(s)] 
has a jump discontinuity of n: at s = 1 indicating that the pressure distribution changes 
sign across the edge singularity; this feature persists up to (A1 = 7, and is evident in the 
boundary-layer solution. Away from the singular region, arg[p(s)] tends to in:, the 
potential flow result, (2.15), that is continuous at s = 1 .  According to figure 2(b) ,  the 
pressure vanishes on points that originate from the symmetry axis (s = f 2)  and travel 
towards the centreline (s = 0). 

Figure 2 (c) indicates that the tangential stress distribution is also singular at s = 1. 
By the argument beneath (4.2), the results shown in figure 2 ( d )  imply that two 
stagnation points, s,* and s,* (the subscript denotes the initial location: s = 0 and s = 
2) ,  appear on the side and face of the cylinder surface during decelerating portions of 
the oscillation cycle. The first stagnation point to appear, s:, emanates from the 
symmetry axis (s = 2)  and travels along the cylinder surface to the edge at s = 1 ; s,* 
emanates from the centreline (s = 0) slightly later in the cycle, and also travels to the 
edge. Apparently, flow reversal occurs last at the edge of the cylinder. By fore-aft 
symmetry, additional stagnation points, - s,* and - s:, travel simultaneously 
towards the rear edge at s = - 1 .  Stagnation points (and p = 0 points) travel slowest 
near the cylinder edge. This four-stagnation-point flow reversal process on a cylinder 
surface is more complex than the reversal processes for a sphere (no travelling 
stagnation points) or spheroids (two stagnation points) (Pozrikidis 1989 b) .  

Figure 2 ( d )  and (4.2) indicate that flow reversal begins on the face and side of the 
cylinder surface before simultaneous flow reversal occurs on a sphere (oscillating at the 
same frequency). AX lower frequencies (lAl < l ) ,  complete surface flow reversal occurs 
at essentially the same time in the cycle for a cylinder and a sphere; however, complete 
surface flow reversal for a cylinder is relatively delayed at higher frequencies (lAl = 3 
and 7). In the limit IAl+m the boundary-layer solution, (2.16), indicates that 
simultaneous flow reversal occurs everywhere on any particle surface when w t  = in:. 
Figure 2 ( d )  reveals that arg If&)] > in: on the face of the cylinder ( 1  d s < 2)  for 
intermediate frequencies and is maximal for JAJ z 3 ; this feature was also observed for 
spheroids (Pozrikidis 1989 b) .  

The boundary-layer solution is only valid for IAl 9 1 and away from the cylinder 
edge : Is - 1 I 9 1Al-l. The potential flow and boundary-layer solutions depicted in figure 
2 are evaluated with /A(  = 7 and the magnitude profiles are normalized consistently 
with fully numerical results for IAl = 7 ;  a direct comparison is thus possible. In the 
region of validity, figure 2 and table 1 indicate that the boundary-layer solution 
accurately approximates fully numerical calculations even at the modest frequency 
Ih( = 7. According to the results depicted in figure 2, the boundary-layer solution is 
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FIGURE 2. Magnitude and phase of normalized pressure (a, b), and tangential stress (c,  d ) ,  
distributions. Solid curves: results for Ihl as labelled; dashed curves: Ihl = 0 results; dashed-dotted 
curves : potential-flow pressure ; dotted curves : boundary-layer solution (with \A1 = 7). Numerical 
values for lpREFl and IhREFI supplied in table 1. For Ihl = 0 and 1, IpREFI = lp(2)I. For IAl = 7, potential 
flow, and boundary-layer solution, lpREFl = lA(' = 49 (for comparison). For Ihl = 0, 1 and 7, = 
I f , (O) l ;  for boundary-layer solution, IpFl = If,(O)l with Ihl = 7 (= 8.49) (for comparison). 

Ihl = 0 Ihl = 0.3 Ihl = 1 IAl = 3 /A /  = 5 (A1 = 7 

lp(2)I 1.05 (-) 1.37 (-) 2.61 (22%) 11.0 (6%) 25.6 (4%) 47.0 (4%) 
If,(O)l 0.754 (-) 0.969 (-) 1.61 (30%) 3.83 (11 %) 6.10 (7%) 8.49 (7%) 

TABLE 1. Numerical values used to normalize pressure and tangential stress magnitude profiles in 
figure 2, except as noted in figure caption 2. Also shown is the percentage error (relative to fully 
numerical calculations) of the boundary-layer solution: p(2)  = 0.765h2 + 1.43h, h(0) = 1.13h. 
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most accurate along the cylinder side (Is1 < l), suggesting that the boundary layer is 
thinner there. 

For two-dimensional viscous flow around a 90" corner, Dean & Montagnon (1949) 
showed that near the corner (s+ l), the pressure and tangential stress distributions 
are singular : p(s) - sign (s - 1) 1s - 1 I-' 455516 and f , ( s )  - Is- 11-O 455516 . A simple, 
local analysis (Jackson 1962) reveals that [@(s)--@(l)] - Is- 11; for potential flow 
around a 90" corner. It follows that near the corner, [p(s) - h2@(1)] - h21s- 11; for 
potential flow, andx(s) - Is- 11-4 for the boundary-layer flow. A similar local analysis 
of (2.14~) reveals that the boundary-layer solution for the excess pressure is singular 
at the cylinder edges : p(s)' - sign (s- 1) 1s - 1 I-;. Apparently, the two-dimensional 
pressure and tangential stress distributions are equally singular at s = 1 in the low- and 
high-frequency limits ; the pressure has a discontinuous sign change and the tangential 
stress has constant sign across the singularity. However, the singularity is stronger in 
the low-frequency limit (-0.455516.. . versus -$), and the high-frequency pressure 
distribution is continuous at leading order. These two-dimensional flow analyses 
qualitatively explain the singular tractions observed in figure 2. 

The results depicted in figure 3 suggest that the steady two-dimensional viscous flow 
singularity persists at the cylinder edge for finite /hi. Near the cylinder edge, an 
appropriate characteristic length for the local flow field is Is- 11 a, not the particle 
dimension, a. Thus, a modified frequency parameter, hls - 11, describes the unsteady 
character of the flow field near s = 1. For Is- 11 < 1, the local flow field is two- 
dimensional. Accordingly, singular, two-dimensional, steady Stokes flow characterizes 
the region 1s - 1 I (1 + 1 hl) 6 1. This claim explains the confinement of manifest singular 
pressure to a smaller region near s = 1 with increased Ihl because p(s) is continuous to 
leading order for IhJ + 1 (figures 2a, b, 3 a-d). The tangential stress is singular in both 
limiting regimes so a singularity confinement is not observed in figures 2(c, d) and 
3(e-h). The existence of a two-dimensional steady Stokes region also explains the 
pronounced phase angle minima for the tangential stress distributions at finite Ihl 
observed in figure 2(d); the local phase shift at s = 1 is non-vanishing because the local 
flow field interacts with the unsteady flow field away from the cylinder edge. 

The boundary-layer solution varies rapidly in the repion 1hl-l < Is- 11 < 1, (lhl + 1); 
the two-dimensional analysis predicts 1 6 Ix(s)l < Ihls, but the pressure is constant to 
leading order, p(s) = h2@(1) + O(lhl4). Unfortunately, this prediction cannot be 
observed because the region 1hl-l < Is- 11 < 1 is non-existent for the moderate 
frequencies considered herein (lhl < 7). the boundary-layer solution breaks down for 
Is- 11 = O(lhl-') because the boundary layer is not thin compared to the characteristic 
(tangential) lengthscale. Thus, a two-dimensional boundary-layer singularity cannot 
occur; the regions near s = f 1 that are described by a two-dimensional steady Stokes 
singularity and a two-dimensional boundary-layer solution are non-overlapping. 

FIGURE 3. Normalized absolute values of real (solid curves) and imaginary (dashed curves) 
components of pressure (a-d), and tangential stress (e-h), distributions; curves: 2N = 160, circles: 
2N = 40 contour segments. Profiles for 0 < s < 1 and 1 < s < 2 as labelled. Dotted curves: singular 
behaviour for steady two-dimensional viscous (a-c, e-g), potential (d), and boundary-layer (h) flows. 
Note: p,(l) = 0.294A2 (potential flow). See table 1 for lp(2)I and I f , (O)l  values. 
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FIGURE 4. For caption see facing page. 

5.  Flow field 
5.1. Pressure field 

The pressure field, p(x) ,  is axisymmetric and fore-aft antisymmetric. By (2.6), p ( x )  
depends only on the instantaneous pressure distribution on the particle surface and 
tends to a dipole in the far-field: 

p(x )  = iei[Rij + h2 V, Sij] Qj, r % 1, 

for oscillating particles of any shape. According to (2.8) and (2.18), the pressure is in 
phase with the particle velocity at low frequencies, and in phase with the particle 
acceleration at high frequencies. 

The pressure field produced by an oscillating sphere is a simple dipole everywhere 
(Stokes 1851): p(x )  = p(6 ) / r2 ,  wherep(6) is the surface pressure distribution, (4.1). This 
simple, smoothly varying field contrasts with the near-field pressure for an axially 
oscillating cylinder depicted in figure 4. The real-valued steady Stokes pressure field, 
shown in figure 4(a), is qualitatively distinct from the imaginary-valued potential flow 
pressure field in figure 4(j). The steady Stokes pressure field exhibits large pressure 
gradients near the edge of the cylinder and a region of suction ( p  < 0) along the side 
of the cylinder that is bounded by the labelled p = 0 isobar. By contrast, the potential 
flow pressure field has only modest pressure gradients near the edge of the cylinder and 
has the same sign everywhere forward of the centreline. The pressure fields for finite 
oscillation frequencies are complex-valued. The tendency of the pressure field to the 
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FIGURE 4. Pressure fields: real-valued field for lAl+O (a) ;  real and imaginary fields (b,c),  (d,e), 
cf,g), (h, i> for Ihl = 0.3,1,3,7; imaginary-valued field for Ihl+ co ( j ) .  By symmetry, only a side view 
of the upper half of the cylinder and surrounding pressure field are shown. Isobars separated by 
lp(2)1/10 (p(2)  given in table 1). 

far-field dipole form (5.1), and the transition from the real-valued steady Stokes 
pressure field to the imaginary-valued potential flow field with increasing Ih(, are 
apparent in figure 4. 

5.2. Velocity j e ld  
Pathlines coincide with streamline segments whenever u(x) has constant phase or is 
quasi-steady ; this is true for Ihl r 4 1 and Ihl r 9 1. In general, however, (instantaneous) 
streamlines differ from pathlines in oscillatory Stokes flow : streamlines show 
kinematical features of the velocity field, and pathlines convey the net convective 
properties. 

5.2.1. Instantaneous streamlines 

oscillation cycle, wt = T ~ ,  are described by 
Streamlines (tangent to the instantaneous velocity field) at a particular instant in the 

dx - dY 
Re{u(x, y) e-''~} - Re{v(x, y) e-i70}' (5.2) 

where (x, y) are Cartesian coordinates in a meridian plane : x parallel and y normal to 
the symmetry axis; u and v are the corresponding velocity components relative to the 
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FIGURE 5. Instantaneous streamlines for oscillating sphere, Ihl = 1. Stream-function values follow the 
sequence: $ = 10,3,1,0.3,0.1,. . . , O ,  . . . , -0.1, -0.3, - 1, - 3. Note: length scale changes in each part 
of the figure as indicated. (a) wt = 0;  (b) 0 .375~ ;  (c) 0 . 4 0 ~ ;  ( d )  0 . 4 5 ~ ;  (e) 0 . 5 0 ~ ;  (f) 0 .55~ .  

particle. Initial conditions are obtained from selected values of the Stokes stream 
function (Kim & Karrila 1991): 

(X,,Y,) 

(ql, 0) 
$K%>Y,) = J Re{u(xo,Y)e-"0>YdY. 

Sphere. In figure 5,  a sequence of instantaneous streamline patterns depicts the 
unsteady flow past an oscillating sphere with Ihl = 1 ; the streamlines are shown in the 
(accelerating) reference frame of the particle. According to (4.2), surface flow reversal 
(simultaneously) occurs when w t  = +)T (lhl = 1); at this instant, the streaming flow 
pattern is very weak as stream-function values in figure 5(b) indicate. Immediately 
thereafter, a thin region of reversed flow envelopes the entire sphere surface; an eddy 
in the shape of a thin spherical shell is formed that is associated with two stagnation 
points travelling away from the sphere surface along the symmetry axis. As the sphere 
decelerates further, figure 5 (c ,  d)  shows that stagnation points travel further outward 
and the spherical-shell eddy expands : vorticity diffuses away from the sphere surface ; 
the recirculating eddy has a radius of 2.88 when w t  = 0.457~. Increasingly negative 
stream-function values within the expanding eddy reflect the growing reverse-flow 
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strength. The eddy expands to infinity for wt +in, as discussed below, terminating the 
near-field flow reversal process. 

Finite-length cylinder. According to figure 2 (d ) ,  axisymmetric near-field flow reversal 
for the finite-length cylinder with Ihl = 1 begins when o t  x 0 . 2 3 ~  as two stagnation 
points emanate from the symmetry axis and travel along the cylinder faces towards the 
edges ; two additional stagnation points simultaneously travel away from the cylinder 
along the symmetry axis. Thus, two toroidal eddies are formed that are attached to the 
front and rear cylinder faces and wrap around the symmetry axis (figure 6b), similar 
to the near-field flow reversal past an oblate spheroid (Pozrikidis 1989b). The fore-aft 
eddies expand gradually during the interval 0 . 2 3 ~  < wt < 0 . 3 5 ~  covering the cylinder 
faces (1.1 < 1st < 2); stream-function values reveal a weak recirculating flow. Figure 
2 ( d )  indicates that two additional stagnation points emanate from the cylinder 
centreline when wt x 0 . 3 5 ~  and travel along the surface towards the edges. This signals 
the birth of a third toroidal eddy that wraps around the cylinder centreline (figure 6c) ,  
similar to the single eddy that forms during near-field flow reversal past a prolate 
spheroid (Pozrikidis 1989 b) ; stream-function values indicate that the recirculating flow 
is comparable in all eddies. 

As the cylinder decelerates further, figure 6(d-f) shows that the side eddy quickly 
expands and gathers strength, dominating the recirculating flow in the fore-aft eddies. 
According to figure 2(d) ,  eddy coalescence occurs as the four travelling stagnation 
points reach the cylinder edges, s = -t 1, when wt x FK (figure 6d-f). A single eddy 
results after coalescence that envelopes the entire cylinder. Its evolution and the 
remainder of the near-field flow reversal process (figure 6g-i), is qualitatively the same 
as for a sphere; the single eddy is slightly elongated and has a somewhat larger mean 
radius: 3.30 when wt = 0 . 4 5 ~ .  

General features. Simple, streaming flow, corresponding to the real component of the 
velocity field, is observed when the particle velocity is maximal (wt = 0); the same 
qualitative streamline pattern occurs during the accelerating, and first part of the 
decelerating, portions of the oscillation cycle. Re{u(x)} is qualitatively described by 
steady Stokes flow near the particle surface (lhl r 4 l), and by potential flow far from 
the particle ([hi r >> 1) (cf. figures 5 a  and 6a). Streamlines (= pathlines) for steady 
Stokes and potential flow are depicted in figure 7(a ,  c) for a sphere and in figure 7(b ,  d )  
for a cylinder. These velocity fields are quasi-steady: for an oscillating particle, the 
stream function varies as coswt with amplitudes given by the values in the figure 
caption. The qualitative similarity between the simple streaming flow patterns depicted 
in figures 5(a), 7 (a) ,  and 7(c) ,  and those depicted in figures 6(a), 7 (b) ,  and 7 ( d )  
indicates that detailed particle geometry is unimportant for the quasi-steady flows, or 
the real part of the unsteady velocity field. 

As the oscillation cycle progresses, the particle and surrounding flow field decelerate 
but the streaming flow pattern persists ; it is interrupted after further deceleration by 
an unsteady near-field flow reversal process, initiated by surface flow reversal. Surface 
flow reversal is affected by the detailed particle geometry (cf. §4), thus it follows that 
the initial stages of unsteady near-field flow reversal are sensitive to particle shape. As 
explained beneath (5.4), the flow field is everywhere reversed and the particle stationary 
when wt = in. The streaming flow pattern is immediately resumed for IT > wt > $IT (e.g. 
figures 5e, f and 6i,j3. The foregoing unsteady flow reversal process repeats exactly a 
half-cycle later during third-quarter deceleration. 

The instantaneous streamline patterns for different frequency parameters are 
qualitatively the same as those depicted in figures 5 and 6 for (hi = 1. The unsteady flow 
reversal process has the most overall significance for JhJ x 1. The recirculating eddy 
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FIGURE 6. Instantaneous streamlines for oscillating cylinder IAl = 1. Stream-function values follow 
the sequence: 1c.= 10,3,1,0.3,0.1, ..., 0 ,..., -0.1, -0.3,-1,-3. Note: it was not possible to 
determine the y? = 0 streamlines in (b-d); the length scale changes in each part of the figure, as 
indicated. (a) wt = 0, (b) 0.35~;  (c) 0.36%; (d) 0.37%; (e) 0 . 3 8 ~ ;  (f) 0 . 3 9 ~ ;  (g) 0 . 4 0 ~ ;  (h) 0 . 4 5 ~ ;  (i) 
0 . 5 0 ~ ;  (5) 0 .55~ .  

forms earlier in the cycle at higher oscillation frequencies but is compressed closer to 
the particle surface; for Ihl % 1, the recirculating eddy generally lies within a thin 
O(lhl-l) boundary layer (except when wt-t in  and $I as discussed below). After the 
recirculating eddy envelops an oscillating particle and assumes a nearly spherical 
shape, its radius is given by the location of the stagnation points that move outward 
from the particle surface (cf. figures 5c, d and 6e-h). Eddy expansion is depicted in 
figure 8 by the location of stagnation points for the case of a sphere or a cylinder with 
Ihl = 0.3,1,3,7. 

Far from an arbitrary-shaped particle, the size and evolution of the unsteady viscous 
flow reversal eddy can be predicted by examining the far-field stream function derived 
from (5.1) with the help of (2.11): 

which has constant phase : arg [R!j + A2Vp dij] +in. The result indicates that the eddy 
becomes spherical as it expands; its outer radius is obtained by solving for Re{$} = 
0: 

ei ej Re{ Rij} 5 
= [ 2nJh126 1 (5.4) 

where 6 = +n-wt or in-wt. The &; singular behaviour for wt+$n, and the weak, 
[Re{Rij}]i, shape dependence are illustrated in figure 8 for the case of a sphere and a 
cylinder. According to (5.3) and (5.4), the (tangential) velocity on the eddy surface is 
:asin 8, independent of particle shape and oscillation frequency: the eddy vanishes, and 
the flow is everywhere reversed for S+O. For Ih( = 1 and w t  = 0.45n, the asymptotic 
formula, (5.4), yields r = 3.19 and r = 3.50 for a sphere and cylinder, fairly close to the 
numerical results quoted above, even for the moderately large value 6 = n/20. At the 
same frequency and phase, the formula predicts r = 4.23 and r = 2.99 for a prolate and 
oblate spheroid, in reasonable agreement with numerical values, Y = 4.5 and r = 2.6 
obtained from Pozrikidis (19893). 

The recirculating eddy is an unsteady viscous effect that is manifested in the 
irrotational far-field ; it is a long-range effect, albeit short-lived. Viscous effects are 
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FIGURE 7. Pathlines (and streamlines) for flow past a sphere and cylinder; SZ = 2 :  A = 0 (a,b); 
[ A [ +  00 (c,  d ) ;  IAl = 1 (e,f). Initial points on w t  = 0 streamlines corresponding to $ = 10,3,1, ... . 
Note the length scale in each part of the figure. 

directly responsible for the near-field reversal process, and the latter determines 
kinematical features of the entire flow reversal process, even for JAJ r + 1. For an 
arbitrary particle, the low- and high-frequency formulae are obtained from (2.8) and 
(2.18) : Re(Rij} = Rb + Ihl R:k REi/61/2n and Re{Rij} = Ihl B;/1/2 for Ihl 4 1 and Ihl % 
1. Thus, according to (5.4), the eddy radius (for fixed w t )  is O(Ih1-i) at low frequencies 
and O(1Al-i) at high frequencies for S+O, in contrast to the O(Ih1-l) eddy radius 
predicted for earlier stages of its evolution, S = O(1). 
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FIGURE 8. Instantaneous location of stagnation point along symmetry axis of an oscillating cylinder 
(thicker curves) and sphere (thinner curves) as a function of phase during the oscillation cycle. 
~, - Ihl = 0.3; zz ,  Ihl = 1 ; r y  Ihl = 3;::::::, Ihl = 7. 

5.2.2. Pathlines 

(pathlines) are described by 
The (axisymmetric) trajectories of fluid elements during one oscillation cycle 

dx dY 
dr d7 

Sl- = Re{u(x, y) e-”}, Sl - = Re{v(x, y )  e-iT}, (5.5) 

0 < 7 < 27~; 7 = 0: x,y = xo,yo, 

where (x,y) and ( u , ~ )  are defined beneath (5.2), and 7 = wt .  By the assumption of 
small-amplitude oscillations, SZ % [A[’, u(x) z u(x,); thus, (5.5) is integrated to yield 

Sl(x - x,) = Re{u(xo)} sin 7 - Im{u(x,)} (1 - cos 7), 0 < 7 < 27~, (5.6) 
indicating that pathlines for linearized oscillatory flows are closed elliptical orbits, 
linear in Sl. Pathlines for steady Stokes flow, potential flow, and unsteady Stokes ([At 
= 1) are depicted in figure 7. Since pathlines are linear in Sl, Sl = 2 was used to help 
visualize pathline structure ; however, pathlines would generally be much smaller than 
those depicted in figure 7 because 3% 1. 

Unsteady Stokes pathlines (figure 7e,f) and streamlines for the real component of 
the velocity field (figures 5a and 6a) agree closely. Apparently, Re{u(x)} dominates 
convective processes in linearized low-Reynolds-number flows, thus (5.6) reduces to 

(5.7) SZ(x-x,) z Re{u(x,)} t, - 1 < t < 1. 

Since Re{u(x)) is insensitive to the detailed particle geometry, we conclude the same for 
the pathlines of oscillatory Stokes flow. 

On the assumption that fluid displacement is O(a/Sl), it follows that the effect of 
small-amplitude oscillatory motion is qualitatively similar to an anisotropic diffusivity, 
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D / v  = O(Re/Sl), tangent to the surface of an oscillating particle. Thus, for linearized 
oscillatory flow, convection is unlikely to significantly facilitate mass transport. 
Convective enhancement by oscillatory flow generally requires the steady-streaming 
flow associated with finite Reynolds numbers (e.g. Ghaddar et al. 1986). 

6. Concluding remarks 
The flow field generated by axial oscillations of a finite-length cylinder in a viscous 

liquid under low-Reynolds-number conditions has been examined in detail. Numerical 
calculations were performed using a first-kind boundary integral formulation. A 
boundary-layer solution that involves two frequency-independent second-kind bound- 
ary integral equations was formulated for high oscillation frequencies. Numerical 
results were obtained by discretizing the integral equation and approximating the 
traction by a piecewise-continuous function. An unequal discretization policy was 
implemented, based on the predicted traction singularities at the cylinder edge. 
Boundary integral calculations were successful for moderate oscillation frequencies 
(lAl 6 7); when successful, the boundary integral calculations appear to be pointwise 
valid and capable of probing the singular behaviour at non-smooth boundaries. 
Convergence was obtained with 2N = 40 boundary elements but 160 elements were 
used because this gave superior resolution of the traction singularities at the cylinder 
edge. The second-kind integral equations for the boundary-layer solution were solved 
by a similar procedure. Away from the singular region near the cylinder edge, the 
boundary-layer solution agrees closely with fully numerical calculations even for the 
modest frequency parameter Ihl = 7. 

Traction distributions for unsteady Stokes flow are singular for all oscillation 
frequencies at the cylinder edge (Is- 11 < 1) and characterized by two-dimensional flow 
around a 90" corner. A local two-dimensional analysis qualitatively predicts the 
singular behaviour. For Is- 1 I 4 (1 + lAl)-', a two-dimensional steady Stokes flow 
singularity is predicted and several qualitative features were observed. We should note 
that a mathematically exact particle edge or corner is an unrealistic surface feature: the 
local radius of curvature has a physical lower bound, x 1 nm, dictated by the 
breakdown of the continuum approximation, implicit in (1.1) ; thus, 1s - 1 I 2 1 / 1000 
for a micron sized particle. The results depicted in figure 3, indicate that large tractions 
can, nevertheless, occur at sharp physical surface features. 

The pressure field is complex-valued; the real component of the near-field pressure 
resembles the rapidly varying steady Stokes pressure field and the imaginary 
component resembles the smoother potential flow field. Instantaneous streamline plots 
for Ihl = 1 reveal complex kinematical features of the axisymmetric oscillatory flow 
field past a cylinder. Three toroidal eddies form during the decelerating portions of the 
oscillation cycle that are attached to the cylinder surface at the travelling stagnation 
points : one eddy on each of the flat faces of the cylinder and a third that wraps around 
the centreline. The eddies grow and coalesce as the stagnation points reach the edges, 
forming a single eddy that encloses the entire particle. Initiation of this near-field flow 
reversal process is consistent with tangential stress profiles that reveal four stagnation 
points on the cylinder surface, two emanating from the symmetry axis and two from 
the cylinder centreline, all travelling towards the edges of the cylinder where reversal 
occurs last. This contrasts with simpler processes for a sphere or spheroid; it is sensitive 
to particle geometry. However, most of the oscillatory flow cycle is similar for all 
particles : the recirculating eddy expands and vanishes when the particle changes 
direction, a simple streaming flow pattern, associated with Re{u(x)} and insensitive to 
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particle shape, persists during the remainder of the flow cycle. Pathline plots for Ihl = 1 
reveal qualitatively steady Stokes behaviour near the particle surface and irrotational 
flow behaviour far from the particle. Pathlines, and thus convective processes, are 
dominated by the real component of the unsteady velocity field and are thus insensitive 
to particle geometry. It seems unlikely that small-amplitude oscillatory motion can 
significantly enhance mass transport between a fluid and suspended particles. 

In general, the flow field past an oscillating particle will be asymmetric. Except for 
the special case of axisymmetric oscillations, the tangential traction has two 
components ; stagnation points (curves) are thereby precluded. Asymmetric surface 
flow reversal is more complex (Loewenberg 1994). Except for initiation of the unsteady 
near-field flow reversal process, however, instantaneous streamline patterns, and thus 
pathlines, are similar for all particles. After surface flow reversal is complete, the 
remainder of the near-filed flow reversal process for any particle involves the formation 
of a single spherical eddy that expands according to (5.4). The far-field pressure and 
velocity fields are generally described by (5.1) and (5.3). 

This work was supported by a grant from the Australian Research Council. 
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